❓Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети
Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:
1.Ограниченная сложность модели
Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.
2.Малая VC-дименсия
В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.
3.Регуляризация встроена естественным образом
В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.
4.Обучение через оптимизацию функции правдоподобия
Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решаетвыпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.
🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.
❓Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети
Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:
1.Ограниченная сложность модели
Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.
2.Малая VC-дименсия
В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.
3.Регуляризация встроена естественным образом
В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.
4.Обучение через оптимизацию функции правдоподобия
Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решаетвыпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.
🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.
The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.
Библиотека собеса по Data Science | вопросы с собеседований from tw